17 research outputs found

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Predictors and determinants for recovery and survival after upper abdominal surgery

    Get PDF
    Background: Patients with colorectal malignancies have benefited from major improvements in surgical technique and perioperative care during the last decades. These improvements have contributed to fast recovery and high survival rates. In contrast, patients with upper abdominal malignant disease often experience delayed recovery and long-standing functional impairment. Postoperative complications are frequent and the prognosis is often poor. Only a small fraction of patients will survive for five years or more after surgery. Delayed recovery, postoperative morbidity and poor prognosis will naturally affect patients’ health-related quality of life (HRQOL). Patients with upper abdominal malignancies are often weakened by cachexia and sarcopenia (low relative amount of skeletal muscle tissue) preoperatively. Aim - To explore predictors and determinants for recovery and survival after upper abdominal surgery. - To explore how patients and dedicated professionals define recovery. - To explore new and old indicators of risk and prognosis with emphasis on methods to assess cachexia and sarcopenia. - To explore correlations between postoperative morbidity, HRQOL and overall survival after major upper abdominal surgery. Results and conclusions Recovery of mobility and GI function are considered the most important target of convalescence after surgery. The traditional global indicators of poor prognosis after surgery, preoperative weight loss and abnormal serum-albumin, are still valid today. There is a close correlation between functional impairment and prognosis after major upper abdominal surgery. Tissue loss during surgical and oncological treatment for upper abdominal cancer can be evaluated through routine CT examinations. Preoperative low muscularity is independently associated with poor prognosis after resection for gastric adenocarcinoma. However, preoperative body composition indices do not seem to be global indicators of poor prognosis as importance and cut-offs seem to vary with different diseases. Postoperative morbidity is associated with poor long-term survival after major upper abdominal cancer surgery

    Performance and clinical applicability of machine learning in liver computed tomography imaging: a systematic review

    Get PDF
    Objectives Machine learning (ML) for medical imaging is emerging for several organs and image modalities. Our objectives were to provide clinicians with an overview of this field by answering the following questions: (1) How is ML applied in liver computed tomography (CT) imaging? (2) How well do ML systems perform in liver CT imaging? (3) What are the clinical applications of ML in liver CT imaging? Methods A systematic review was carried out according to the guidelines from the PRISMA-P statement. The search string focused on studies containing content relating to artificial intelligence, liver, and computed tomography. Results One hundred ninety-one studies were included in the study. ML was applied to CT liver imaging by image analysis without clinicians’ intervention in majority of studies while in newer studies the fusion of ML method with clinical intervention have been identifed. Several were documented to perform very accurately on reliable but small data. Most models identified were deep learning-based, mainly using convolutional neural networks. Potentially many clinical applications of ML to CT liver imaging have been identified through our review including liver and its lesion segmentation and classification, segmentation of vascular structure inside the liver, fibrosis and cirrhosis staging, metastasis prediction, and evaluation of chemotherapy. Conclusion Several studies attempted to provide transparent result of the model. To make the model convenient for a clinical application, prospective clinical validation studies are in urgent call. Computer scientists and engineers should seek to cooperate with health professionals to ensure this

    Major postoperative complications are associated with impaired long-term survival after gastro-esophageal and pancreatic cancer surgery: a complete national cohort study

    Get PDF
    Background: Some studies have reported an association between complications and impaired long-term survival after cancer surgery. We aimed to investigate how major complications are associated with overall survival after gastro-esophageal and pancreatic cancer surgery in a complete national cohort. Methods: All esophageal-, gastric- and pancreatic resections performed for cancer in Norway between January 1, 2008, and December 1, 2013 were identified in the Norwegian Patient Registry together with data concerning major postoperative complications and survival. Results: When emergency cases were excluded, there were 1965 esophageal-, gastric- or pancreatic resections performed for cancer in Norway between 1 January 2008, and 1 December 2013. A total of 248 patients (12.6 %) suffered major postoperative complications. Complications were associated both with increased early (90 days) mortality (OR = 4.25, 95 % CI = 2.78–6.50), and reduced overall survival when patients suffering early mortality were excluded (HR = 1.23, 95 % CI = 1.01–1.50). Conclusions: Major postoperative complications are associated with impaired long-term survival after gastro-esophageal and pancreatic cancer surgery

    Neoadjuvant Chemoradiotherapy and Surgery for Esophageal Squamous Cell Carcinoma Versus Definitive Chemoradiotherapy With Salvage Surgery as Needed: The Study Protocol for the Randomized Controlled NEEDS Trial.

    Get PDF
    BACKGROUND: The globally dominant treatment with curative intent for locally advanced esophageal squamous cell carcinoma (ESCC) is neoadjuvant chemoradiotherapy (nCRT) with subsequent esophagectomy. This multimodal treatment leads to around 60% overall 5-year survival, yet with impaired post-surgical quality of life. Observational studies indicate that curatively intended chemoradiotherapy, so-called definitive chemoradiotherapy (dCRT) followed by surveillance of the primary tumor site and regional lymph node stations and surgery only when needed to ensure local tumor control, may lead to similar survival as nCRT with surgery, but with considerably less impairment of quality of life. This trial aims to demonstrate that dCRT, with selectively performed salvage esophagectomy only when needed to achieve locoregional tumor control, is non-inferior regarding overall survival, and superior regarding health-related quality of life (HRQOL), compared to nCRT followed by mandatory surgery, in patients with operable, locally advanced ESCC. METHODS: This is a pragmatic open-label, randomized controlled phase III, multicenter trial with non-inferiority design with regard to the primary endpoint overall survival and a superiority hypothesis for the experimental intervention dCRT with regard to the main secondary endpoint global HRQOL one year after randomization. The control intervention is nCRT followed by preplanned surgery and the experimental intervention is dCRT followed by surveillance and salvage esophagectomy only when needed to secure local tumor control. A target sample size of 1200 randomized patients is planned in order to reach 462 events (deaths) during follow-up. CLINICAL TRIAL REGISTRATION: www.ClinicalTrials.gov, identifier: NCT04460352

    Neoadjuvant Chemoradiotherapy and Surgery for Esophageal Squamous Cell Carcinoma Versus Definitive Chemoradiotherapy With Salvage Surgery as Needed: The Study Protocol for the Randomized Controlled NEEDS Trial

    No full text
    Background: The globally dominant treatment with curative intent for locally advanced esophageal squamous cell carcinoma (ESCC) is neoadjuvant chemoradiotherapy (nCRT) with subsequent esophagectomy. This multimodal treatment leads to around 60% overall 5-year survival, yet with impaired post-surgical quality of life. Observational studies indicate that curatively intended chemoradiotherapy, so-called definitive chemoradiotherapy (dCRT) followed by surveillance of the primary tumor site and regional lymph node stations and surgery only when needed to ensure local tumor control, may lead to similar survival as nCRT with surgery, but with considerably less impairment of quality of life. This trial aims to demonstrate that dCRT, with selectively performed salvage esophagectomy only when needed to achieve locoregional tumor control, is non-inferior regarding overall survival, and superior regarding health-related quality of life (HRQOL), compared to nCRT followed by mandatory surgery, in patients with operable, locally advanced ESCC. Methods: This is a pragmatic open-label, randomized controlled phase III, multicenter trial with non-inferiority design with regard to the primary endpoint overall survival and a superiority hypothesis for the experimental intervention dCRT with regard to the main secondary endpoint global HRQOL one year after randomization. The control intervention is nCRT followed by preplanned surgery and the experimental intervention is dCRT followed by surveillance and salvage esophagectomy only when needed to secure local tumor control. A target sample size of 1200 randomized patients is planned in order to reach 462 events (deaths) during follow-up. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT04460352
    corecore